Abstract

The present work aims to predict the formability of adhesive bonded sheets accurately. The difficulty during incorporation of adhesive and adhesion properties accurately in finite element (FE) simulations while predicting the formability is addressed. Here an artificial neural network (ANN) model is developed based on the experimental data of adhesive bonded sheets which inherently includes actual properties of adhesive and adhesion. Feedforward back propagation algorithm is used for predicting forming limit from tensile test and cup height from deep drawing process. In FE simulations, thickness heterogeneities with factor 'f' have been designed in the base materials to predict the forming limit without adhesive and adhesion properties. The ANN results are validated through experimental results and also compared with FE results. A good correlation between experimental and ANN predicted results, and a considerable variation with FE results confirm the viability of ANN for predicting the formability of adhesive bonded sheets accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.