Abstract

This study presents an approach using artificial neural networks (ANN) algorithm for predicting the flutter derivatives of rectangular section models without wind tunnel tests. Firstly, a database of flutter derivatives is identified from a back-propagation (BP) ANN model that is built using experimental dynamic responses of rectangular section models in smooth flow as the input/output data. Then, these limited sets of database are employed as input/output data to establish a prediction ANN frame model to further predict the flutter derivatives for other rectangular section models without conducting wind tunnel tests. The results presented indicate that this ANN prediction scheme works reasonably well. Therefore, instead of going through wind tunnel tests, this ANN approach provides a convenient and feasible option for expanding the flutter derivative database that can help to determine an appropriate basic shape of the bridge section in the preliminary design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.