Abstract

The hot deformation behavior of a typical nickel-based superalloy was investigated by isothermal compression tests in the temperature range of 1010∼1160 °C and strain rate range of 0.001∼1 s−1. The results indicate that the work hardening, dynamic recovery (DRV) and dynamic recrystallization (DRX) occurred in the alloy during hot deformation. Considering the coupled effects of deformation parameters on the flow behaviors of the alloy, the constitutive models were established to predict the flow stresses during the work hardening-DRV period and DRX periods. In the DRX period, the modified DRX kinetic equation was used to develop the constitutive models, and the strain for maximum softening rate was used in this equation. Additionally, the material constants in the constitutive models were expressed as the functions of Zener-Hollomon parameter by using a linear fitting method. Meanwhile, comparisons between the measured and the predicted flow stresses were carried out, while the correlation coefficient (R) and average absolute relative error (AARE) between the measured and predicted values were also calculated. The results confirm that the developed models could give an accurate estimation of the flow stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call