Abstract
The viscoplastic behaviour of magnesium alloys at high temperatures leads to highly temperature-dependent mechanical properties. While at high strain rates a notable strain hardening response is observed, at low strain rates the material shows a smooth plastic response with negligible amount of hardening. This complicated behaviour is due to different deformation mechanisms that are active at different strain rate regimes, resulting in different strain rate sensitivity parameters. In this study we show, by utilizing both numerical simulations and experiments, that this behaviour can be predicted by a model that combines two deformation mechanisms, grain boundary sliding mechanism and dislocation glide mechanism. We discuss the importance of each deformation mechanism at different strain rate regimes based on the findings of modelling and experimental results for AZ3 magnesium alloy. By developing a model that includes the above-mentioned two deformation mechanism, the prediction of flow properties is expanded to a wide range of strain rate regimes compared to previous study. The obtained numerical findings for the stress–strain behaviour as well as texture evolution show good agreement with the experimental results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.