Abstract

Adding a small amount of non-plastic silt to clean sands may lead to dramatic loss of shear strength and a noteworthy tendency toward contraction when the mechanical behavior of the mixture is compared with that of the clean host sand. Thus, simulation of the behavior of silty sands with varying fines content is still a challenging subject in geomechanics. A unified constitutive model for clean and silty sands is presented in this paper. To eliminate the factitious decrease of void ratio associated with inactive silt particles in various silty sand mixtures, the concept of equivalent void ratio is used in the model formulation instead of the global void ratio. In addition, the instantaneous soil state is expressed in terms of intergranular state parameter taking into account the combined influence of intergranular void ratio, mean principal effective stress and fines content. Then, dilatancy and plastic hardening modulus are directly linked to the intergranular state parameter. To improve the model capacity in simulation of cyclic tests, new features are added to the plastic hardening modulus. It is shown that the proposed model can reasonably reproduce the mechanical behavior as well as the onset of flow liquefaction instability of clean and silty sands using a unique set of parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call