Abstract
Swirl-induced phenomena are used in gas turbine burners as a mechanism to stabilize the flame. The formation of coherent structures under turbulent swirling conditions plays a fundamental role in the stabilization and needs to be completely understood also in the absence of combustion. In this work, numerical calculations of the unsteady, Reynolds-averaged Navier-Stokes (URANS) equations for isothermal flow in an unconfined annular low swirl burner (50 kW) are reported. The standard k-ϵ and Reynolds stress models are used to run computational cases at a Reynolds number of 12,000 and two swirl numbers (S L = 0.57 and S H = 0.64). The numerical method is validated with the experiments reported by Legrand et al. [27]. Numerical results agree well with experiments for mean flow, temporal pressure measurements, and transient coherent structures. 2-D proper orthogonal decomposition (POD), 3-D iso-surfaces and advanced, vortex-related visualization methods are used to document the latter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.