Abstract

The present paper deals with the prediction of three-dimensional fluid flow and heat transfer in rib-roughened ducts of square cross-section, which are either stationary, or rotate in orthogonal mode. The main objective is to assess how a recently developed variant of a cubic non-linear k−e model (proposed by Craft et al. Flow Turbul Combust 63:59–80, 1999) can predict three-dimensional flow and heat transfer characteristics through stationary and rotating ribbed ducts. The present paper discusses turbulent air flow and heat transfer through two different configurations, namely: (I) a stationary square duct with “in-line” normal and (II) a square duct with normal ribs in a “staggered” arrangement under stationary and rotating conditions, with the axis of rotation normal to the flow direction and parallel to the ribs. In this paper the flow and thermal predictions of the linear k−e model (EVM) are also included, as a set of baseline predictions. The mean flow predictions show that both linear and non-linear k−e models can successfully reproduce most of the measured data for stream-wise and cross-stream velocity components. Moreover, the non-linear model is able to produce better results for the turbulent stresses. The heat transfer predictions show that both EVM and NLEVM2, the more recent variant of the non-linear k−e, with the algebraic length-scale correction term, overestimate the measured Nusselt numbers for both geometries examined. While the EVM with the differential length-scale correction term underestimates heat transfer levels, the Nusselt number predictions with the NLEVM2 and the ‘NYP’ term are in close agreements with the measured data. Comparisons with our earlier work, Iacovides and Raisee (Int J Heat Fluid Flow, 20:320–328, 1999), show that the NLEVM2 thermal predictions are of similar quality to those of a second-moment closure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call