Abstract
A dynamic neural network (DNN) and a new computationally efficient functional link artificial neural network (CEFLANN) combination optimised with differential evolution (DE) is presented in this paper to predict financial time series like stock price indices and stock return volatilities of two important Indian stock markets, namely the Reliance Industries Limited (RIL), and NIFTY from one day ahead to one month in advance. The DNN comprises a set of 1st order IIR filters for processing the past inputs and their functional expansions and its weights are adjusted using a sliding mode strategy known for its fast convergence and robustness with respect to chaotic variations in the inputs. Extensive computer simulations are carried out to predict simultaneously the stock market indices and return volatilities and it is observed that the simple IIR–based DNN–FLANN model hybridised with DE produces better forecasting accuracies in comparison to the more complicated neural architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information and Decision Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.