Abstract
The deterioration in profitability of listed companies not only threatens the interests of the enterprise and internal staff, but also makes investors face significant financial loss. It is important to establish an effective early warning system for prediction of financial crisis for better corporate governance. This paper studies the phenomenon of financial distress for 107 Chinese companies that received the label ‘special treatment’ from 2001 to 2008 by the Shanghai Stock Exchange and the Shenzhen Stock Exchange. We use data mining techniques to build financial distress warning models based on 31 financial indicators and three different time windows by comparing these 107 firms to a control group of firms. We observe that the performance of neural networks is more accurate than other classifiers, such as decision trees and support vector machines, as well as an ensemble of multiple classifiers combined using majority voting. An important contribution of the paper is to discover that financial indicators, such as net profit margin of total assets, return on total assets, earnings per share, and cash flow per share, play an important role in prediction of deterioration in profitability. This paper provides a suitable method for prediction of financial distress for listed companies in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.