Abstract

Background/ObjectivesBio-electrical impedance analysis (BIA) is used in population and clinical studies as a technique for estimating body composition. Because of significant underrepresentation in existing literature, we sought to develop and validate predictive equation(s) for BIA for studies in populations of African origin.Subjects/MethodsAmong five cohorts of the Modeling the Epidemiologic Transition Study (METS), height, weight, waist circumference and body composition, using isotope dilution, were measured in 362 adults, ages 25 to 45 with mean BMIs ranging from 24 to 32. BIA measures of resistance and reactance were measured using tetrapolar placement of electrodes and the same model of analyzer across sites (BIA 101Q, RJL Systems). Multiple linear regression analysis was used to develop equations for predicting FFM, as measured by isotope dilution; covariates included sex, age, waist, reactance and height2/resistance, along with dummy variables for each site. Developed equations were then tested in a validation sample; FFM predicted by previously published equations were tested in the total sample.ResultsA site-combined equation and site-specific equations were developed. The mean differences between FFM (reference) and FFM predicted by the study-derived equations were between 0.4–0.6 kg (i.e. 1% difference between actual and predicted FFM) and the measured and predicted values were highly correlated. The site-combined equation performed slightly better than the site-specific equations and the previously published equations.ConclusionsRelatively small differences exist between BIA equations to estimate FFM, whether study-derived or published equations, although the site-combined equation performed slightly better than other. The study-derived equations provide an important tool for research in these understudied populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call