Abstract
BackgroundBioelectrical impedance analysis (BIA) is widely used to measure body composition but has not been adequately evaluated in infancy. Prior studies have largely been of poor quality, and few included healthy term-born offspring, so it is unclear if BIA can accurately predict body composition at this age.AimThis study evaluated impedance technology to predict fat-free mass (FFM) among a large multi-ethnic cohort of infants from the United Kingdom, Singapore, and New Zealand at ages 6 weeks and 6 months (n = 292 and 212, respectively).Materials and methodsUsing air displacement plethysmography (PEA POD) as the reference, two impedance approaches were evaluated: (1) empirical prediction equations; (2) Cole modeling and mixture theory prediction. Sex-specific equations were developed among ∼70% of the cohort. Equations were validated in the remaining ∼30% and in an independent University of Queensland cohort. Mixture theory estimates of FFM were validated using the entire cohort at both ages.ResultsSex-specific equations based on weight and length explained 75–81% of FFM variance at 6 weeks but only 48–57% at 6 months. At both ages, the margin of error for these equations was 5–6% of mean FFM, as assessed by the root mean squared errors (RMSE). The stepwise addition of clinically-relevant covariates (i.e., gestational age, birthweight SDS, subscapular skinfold thickness, abdominal circumference) improved model accuracy (i.e., lowered RMSE). However, improvements in model accuracy were not consistently observed when impedance parameters (as the impedance index) were incorporated instead of length. The bioimpedance equations had mean absolute percentage errors (MAPE) < 5% when validated. Limits of agreement analyses showed that biases were low (< 100 g) and limits of agreement were narrower for bioimpedance-based than anthropometry-based equations, with no clear benefit following the addition of clinically-relevant variables. Estimates of FFM from BIS mixture theory prediction were inaccurate (MAPE 11–12%).ConclusionThe addition of the impedance index improved the accuracy of empirical FFM predictions. However, improvements were modest, so the benefits of using bioimpedance in the field remain unclear and require further investigation. Mixture theory prediction of FFM from BIS is inaccurate in infancy and cannot be recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.