Abstract

This paper presents a distribution free method for predicting the extreme wind velocity from wind monitoring data at the site of the Runyang Suspension Bridge (RSB), China using the maximum entropy theory. The maximum entropy theory is a rational approach for choosing the most unbiased probability distribution from a small sample, which is consistent with available data and contains a minimum of spurious information. In this paper, the theory is used for estimating a joint probability density function considering the combined action of wind speed and direction based on statistical analysis of wind monitoring data at the site of the RSB. The joint probability distribution model is further used to estimate the extreme wind velocity at the deck level of the RSB. The results of the analysis reveal that the probability density function of the maximum entropy method achieves a result that fits well with the monitoring data. Hypothesis testing shows that the distributions of the wind velocity data collected during the past three years do not obey the Gumbel distribution. Finally, our comparison shows that the wind predictions of the maximum entropy method are higher than that of the Gumbel distribution, but much lower than the design wind speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.