Abstract
Esophageal fistula (EF), a rare and potentially fatal complication, can be better managed with predictive models for personalized treatment plans in esophageal cancers. We aim to develop a clinical-deep learning radiomics model for effectively predicting the occurrence of EF. The study involved esophageal cancer patients undergoing radiotherapy or chemoradiotherapy. Arterial phase enhanced CT images were used to extract handcrafted and deep learning radiomic features. Along with clinical information, a 3-step feature selection method (statistical tests, Least Absolute Shrinkage and Selection Operator, and Recursive Feature Elimination) was used to identify five feature sets in training cohort for constructing random forest EF prediction models. Model performance was compared and validated in both retrospective and prospective test cohorts. One hundred seventy five patients (122 in training and 53 in test cohort)were retrospectively collected from April 2018 to June 2022. An additional 27 patients were enrolled as a prospective test cohort from June 2022 to December 2023. Post-selection in the training cohort, five feature sets were used for model construction: clinical, handcrafted radiomic, deep learning radiomic, clinical-handcrafted radiomic, and clinical-deep learning radiomic. The clinical-deep learning radiomic model excelled with AUC of 0.89 (95% Confidence Interval: 0.83-0.95) in the training cohort, 0.81 (0.65-0.94) in the test cohort, and 0.85 (0.71-0.97) in the prospective test cohort. Brier-score and calibration curve analyses validated its predictive ability. The clinical-deep learning radiomic model can effectively predict EF in patients with advanced esophageal cancer undergoing radiotherapy or chemoradiotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.