Abstract
This paper presents an approach for determining the chloride migration rate of hardened concrete by applying fundamental electrochemistry for different cementitious mixtures using the measurements from the chloride-ion penetration test (CIPT) data following ASTM C1202 specifications. The steady-state condition is verified by comparing the numerical values of chloride migration rates during 5, 30, and 360 minutes of testing. Three different theoretical approaches—Nernst-Plank, Nernst-Einstein, and the Zhang-Gjorv method—were applied to obtain the equivalent steady-state diffusion coefficients for different cementitious materials. These results are compared with the diffusion coefficients obtained from Berke’s empirical equation using CIPT data. These methods for the computation of diffusion coefficients include both the joule effect and temperature dependency and eliminate the need for other extended migration tests to obtain the steady-state conditions. Overall, this research presents a reliable method of determining the chloride migration rate for diffusion coefficient prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.