Abstract

Central composite design was successfully applied to predict the equilibrium swelling ratio (Y) of a crosslinked polyacrylamide (PAM) hydrogel. Samples were prepared by a facile, simple and efficient photochemical method, using Eosin Y/triethanolamine system as a photo-initiator and 1,6-hexanedioldiacrylate as a crosslinker. The mathematical relationship between the equilibrium swelling ratio and both experimental factors, i.e., temperature (X1) and degree of crosslinking (X2), was evaluated by a second-order quadratic model. The individual and interactive effects of these two parameters were described according to response surface modeling approach. This model allows to predefine the values of the equilibrium swelling ratio of the crosslinked PAM based on experimental conditions, i.e., temperature and degree of crosslinking within intervals [21–78 °C] and [0.75–9%], respectively. As a result, facilitating its application in areas such as drug delivery technology where controlling the swelling of a polymer allows further controlling of drug release. All predicted values were in full agreement with our experimental results [R2 99.85% and R2 (adj) of 99.69% for response Y].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.