Abstract

A framework was established to predict the fracture toughness of degraded closed DCB (CDCB) joints of a toughened adhesive–aluminum system using fracture data obtained from accelerated degradation tests on open-faced joints. The exposure index ( EI), the time integral of water concentration, was calculated at all points in the closed joints using the water diffusion properties of the adhesive. The fracture toughness of the closed joints was then predicted from these calculated EIs by making reference to previously reported fracture toughness data from open-faced DCB (ODCB) specimens degraded to various EI levels. To verify the predictions, fracture experiments and analyses were carried out for closed DCB joints degraded at 60 °C–95% relative humidity (RH) and 60 °C–82% RH conditions. The failure mode of both closed and open DCBs was cohesive in the adhesive layer. Good agreement was observed between the predicted steady-state critical strain energy release rate ( G cs ) values and the experimentally measured G cs values for the degraded closed DCB joints. The results showed that the accelerated open-faced methodology, which significantly reduces the exposure time to reach a given level of degradation, can be used to predict the durability of degraded closed joints used in service conditions. It was also shown that at a given temperature, the knowledge of the degradation behavior at one RH level could be extended to other levels of RH with an acceptable accuracy using the fact that fracture degradation at a given temperature is a unique function of EI, independent of the RH exposure history that gives rise to EI. The results are applicable to other laminated systems where degradation of the bonding layer is a failure mode of concern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.