Abstract

This paper proposes an adaptive network fuzzy inference system (ANFIS) for the prediction of entrance length in pipe for low Reynolds number flow. After using the computational fluid dynamics (CFD) technique to establish the basic database under various working conditions, an efficient rule database and optimal distribution of membership function is constructed from the hybrid-learning algorithm of ANFIS. An experimental data set is obtained with Reynolds number, diameter of the pipe, and inlet velocity as input parameters and entrance length as output parameter. The input–output data set is used for training and validation of the proposed techniques. After validation, they are forwarded for the prediction of entrance length. The entrance length estimation results obtained by the model are compared with existing predictive models and are presented. The model performed quite satisfactory results with the actual and predicted entrance length values. The model can also be used for estimating entrance length on-line but the accuracy of the model depends upon the proper training and selection of data points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.