Abstract

In this paper, Long Short-Term Memory (LSTM) was proposed to predict the energy consumption of an institutional building. A novel energy usage prediction method was demonstrated for daily day-ahead energy consumption by using forecasted weather data. It used weather forecasting data from a local meteorological organization, the Malaysian Meteorological Department (MET). The predictive model was trained by considering the dependencies between energy usage and weather data. The performance of the model was compared with Support Vector Regression (SVR) and Gaussian Process Regression (GPR). The experimental results with a dataset obtained from a building in Multimedia University, Malacca Campus from January 2018 to July 2021 outperformed the SVR and GPR. The proposed model achieved the best RMSE scores (561.692–592.319) when compared to SVR (3135.590–3472.765) and GPR (1243.307–1334.919). Through experimentation and research, the dropout method reduced overfitting significantly. Furthermore, feature analysis was done with SHapley Additive exPlanation to identify the most important weather variables. The results showed that temperature, wind speed, rainfall duration and the amount had a positive effect on the model. Thus, the proposed approach could aid in the implementation of energy policies because accurate predictions of energy consumption could serve as system fault detection and diagnosis for buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.