Abstract

ABSTRACTEnergies for symmetric tilt grain boundaries in pure Al and in Al with substitutional Pb defects at coincident sites along the grain boundaries were calculated using a modified embedded atom method potential and density functional theory. The agreement between the analytic potential, the first principles calculations and experiment is reasonably good for the pure system. For the Al-Pb system both the analytic potential and first principles calculations predict that Pb segregation to the interface is energetically preferred compared to the dilute solution. The application of a disclination structural unit model to calculating grain boundary energies over the entire range of tilt angles is also explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.