Abstract

The transfer of elements C, Si, Mn, P and S from slag into the weld metal or from weld metal into the slag and microhardness has been studied using formulated fluxes. The fluxes have been formulated using extreme vertices design with an aim to develop mathematical models for change in element content and mechanical properties versus flux constituents for submerged arc welding of high-strength low-alloy steel. It is found that CaO is the most significant flux constituent and Al2O3 is the second most significant constituent among individual mixtures. CaO·MgO and CaO·Al2O3 among binary mixtures have significant effect on element transfer and microhardness. Developed mathematical models have been checked for adequacy using t-test and analysis of variance (F-test). Flux mixtures’ composition has been provided for optimum chemical composition and mechanical properties. One of the optimum flux mixture with composition, CaO 11.61, Al2O3 12.33, CaF2 15.00 and MgO 39.06, would be providing desirable chemical composition and mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.