Abstract

Pore structures have a major impact on the transport and electrical properties of electrochemical devices, such as batteries and electric double-layer capacitors (EDLCs). In this work we are concerned with the prediction of the electrical conductivity, ion diffusivity and volumetric capacitance of EDLC electrodes, manufactured from hierarchically porous carbons. To investigate the dependence of the effective properties on the pore structures, we use a structurally resolved parametric model of a random medium. Our approach starts from 3D FIB-SEM imaging, combined with automatic segmentation. Then, a random set model is fitted to the segmented structures and the effective transport properties are predicted using full field simulations by iterations of FFT on 3D pore space images and calculations based on the geometric properties of the structure model. A parameter study of the model is used to investigate the sensitivity of the effective conductivity and diffusivity to changes in the model parameters. Finally, we investigate the volumetric capacitance of the EDLC electrodes with a geometric model, make a comparison with experimental measurements and do a parameter study to suggest improved microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.