Abstract
Studying drug-target interactions (DTIs) is the foundational and crucial phase in drug discovery. Biochemical experiments, while being the most reliable method for determining drug-target affinity (DTA), are time-consuming and costly, making it challenging to meet the current demands for swift and efficient drug development. Consequently, computational DTA prediction methods have emerged as indispensable tools for this research. In this article, we propose a novel deep learning algorithm named GRA-DTA, for DTA prediction. Specifically, we introduce Bidirectional Gated Recurrent Unit (BiGRU) combined with a soft attention mechanism to learn target representations. We employ Graph Sample and Aggregate (GraphSAGE) to learn drug representation, especially to distinguish the different features of drug and target representations and their dimensional contributions. We merge drug and target representations by an attention neural network (ANN) to learn drug-target pair representations, which are fed into fully connected layers to yield predictive DTA. The experimental results showed that GRA-DTA achieved mean squared error of 0.142 and 0.225 and concordance index reached 0.897 and 0.890 on the benchmark datasets KIBA and Davis, respectively, surpassing the most state-of-the-art DTA prediction algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.