Abstract

ObjectivesOur aim was to assess the ability of the Whole-genome sequencing (WGS) in predicting drug resistance profile of multidrug-resistant mycobacterium tuberculosis (MDR-MTB) from newly diagnosed cases in China.MethodsWe validated the Phenotypic drug Sensitivity Test (pDST) for 12 anti-tuberculosis drugs using the Bactec MGIT 960 system. We described the characteristics of the isolates enrolled and compared the pDST results with resistance profiles predicted by WGS.ResultsThe pDST showed that of the 43 isolates enrolled, 25.6% were sensitive to rifabutin (RFB); 97.7%、97.7%、93.0% and 93.0% were sensitive to cycloserine (Cs), amikacin/kanamycin (Ak/Km), para-aminosalicylic acid (Pas) and ethionamide Eto), respectively; 18.6% were resistant to fluoroquinolones (FQs) or second-line injections. Genotype DST determined by WGS of Ak/Km、Eto and RFP reached high consistency to 97.7% compared with pDST, followed by moxifloxacin (Mfx) 95.3%, levofloxaci (Lfx) and Pas 93%, streptomycin (Sm) 90.3%. The genotype DST of RFB and EMB showed low consistency with the pDST of 67.2 and 79.1%. WGS also detected 27.9% isolates of pyrazinamide(PZA)-related drug-resistant mutation. No mutations associated with linezolid (Lzd), bedaquiline (Bdq) and clofazimine (Cfz) were detectd.ConclusionsWGS has the potential to infer resistance profiles without time-consuming phenotypic methods, which could be provide a basis to formulate reasonable treatment in high TB burden areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call