Abstract

Computational drug repositioning can identify potential associations between drugs and diseases. This technology has been shown to be effective in accelerating drug development and reducing experimental costs. Although there has been plenty of research for this task, existing methods are deficient in utilizing complex relationships among biological entities, which may not be conducive to subsequent simulation of drug treatment processes. In this article, we propose a heterogeneous graph embedding method called HMLKGAT to infer novel potential drugs for diseases. More specifically, we first construct a heterogeneous information network by combining drug-disease, drug-protein and disease-protein biological networks. Then, a multi-layer graph attention model is utilized to capture the complex associations in the network to derive representations for drugs and diseases. Finally, to maintain the relationship of nodes in different feature spaces, we propose a multi-kernel learning method to transform and combine the representations. Experimental results demonstrate that HMLKGAT outperforms six state-of-the-art methods in drug-related disease prediction, and case studies of five classical drugs further demonstrate the effectiveness of HMLKGAT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call