Abstract

DNA methylation takes on critical significance to the regulation of gene expression by affecting the stability of DNA and changing the structure of chromosomes. DNA methylation modification sites should be identified, which lays a solid basis for gaining more insights into their biological functions. Existing machine learning-based methods of predicting DNA methylation have not fully exploited the hidden multidimensional information in DNA gene sequences, such that the prediction accuracy of models is significantly limited. Besides, most models have been built in terms of a single methylation type. To address the above-mentioned issues, a deep learning-based method was proposed in this study for DNA methylation site prediction, termed the MEDCNN model. The MEDCNN model is capable of extracting feature information from gene sequences in three dimensions (i.e., positional information, biological information, and chemical information). Moreover, the proposed method employs a convolutional neural network model with double convolutional layers and double fully connected layers while iteratively updating the gradient descent algorithm using the cross-entropy loss function to increase the prediction accuracy of the model. Besides, the MEDCNN model can predict different types of DNA methylation sites. As indicated by the experimental results,the deep learning method based on coding from multiple dimensions outperformed single coding methods, and the MEDCNN model was highly applicable and outperformed existing models in predicting DNA methylation between different species. As revealed by the above-described findings, the MEDCNN model can be effective in predicting DNA methylation sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.