Abstract

Influenza virus poses a significant threat to public health, as exemplified by the recent introduction of the new pandemic strain H1N1/09 into human populations. Pandemics have been initiated by the occurrence of novel changes in animal sources that eventually adapt to human. One important issue in studies of viral genomes, particularly those of influenza virus, is to predict possible changes in genomic sequence that will become hazardous. We previously established a clustering method termed ‘BLSOM’ (batch-learning self-organizing map) that does not depend on sequence alignment and can characterize and compare even 1 million genomic sequences in one run. Strategies for comparing a vast number of genomic sequences simultaneously become increasingly important in genome studies because of remarkable progresses in nucleotide sequencing. In this study, we have constructed BLSOMs based on the oligonucleotide and codon composition of all influenza A viral strains available. Without prior information with regard to their hosts, sequences derived from strains isolated from avian or human sources were successfully clustered according to the hosts. Notably, the pandemic H1N1/09 strains have oligonucleotide and codon compositions that are clearly different from those of human seasonal influenza A strains. This enables us to infer future directional changes in the influenza A viral genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.