Abstract

In this paper, the DBEM/Hybrid LES(Directly Boundary Element Method/Hybrid Large Eddy Simulation)technique is applied to predict the aerodynamic noise generated by tandem circular cylinders immersed in a three-dimensional turbulent flow. Utilizing the Lighthill's Acoustic Analogy, the flow pressure fluctuation near the surface of the cylinder is converted into acoustic dipole sources. Taking the dipole sound sources as the actual sound sources, the aeroacoustic field is simulated and analyzed by DBEM. The research shows that: The strong dipole sources are distributed in the collision zone of the downstream cylindrical surface, where the upstream cylinder's shedding vortex colliding to downstream cylinder surface. Both of the amplitude-frequency response and the phase-frequency response of dipole acoustic source are obtained, which is helpful for further research on aerodynamics noise interference and suppression. Good comparisons are obtained between numerical results and BART (Basic Aerodynamic Research Tunnel) experimental data published by NASA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call