Abstract

Proposed is a simple analytic model that can predict realistically the diffusivities of concrete and mortar. The basic concept of the model comes from the relation between the diffusivities and the microstructure of concrete. The microstructure that affects the diffusivity includes the interfacial transition zone (ITZ) between aggregates and cement pastes as well as the microstructure of cement paste itself. The general effective media (GEM) equation was introduced to derive the diffusivity of cement paste. The effective diffusivity of concrete is derived on the basis of the composite sphere assemblage model, which considers the diffusivities of both ITZ and cement paste. The main parameters in the proposed model are the microstructural properties of cement paste such as capillary porosity and pore structure parameter, solid phase diffusivity, aggregate volume fraction, and interfacial zone properties. To validate the proposed model, many series of concrete and mortar specimens have been tested to measure the diffusivities. The major test variables include the water-to-binder ratios, the types and amount of mineral admixtures on the diffusivities. The effects of compressive strength, water-to-binder ratio, and mineral admixtures have been investigated comprehensively. The comparison of the proposed theory with the test data exhibits reasonably good correlation. The proposed model allows more accurate prediction of diffusion process and, thus, more realistic durability design of concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.