Abstract

This study evaluated the ability of equations developed from the analysis of faecal material by conventional chemistry (F.CHEM), and by near-infrared spectroscopy (F.NIRS), to predict intake and digestibility of forages fed with or without supplements. In vivo datasets were obtained using 30 sheep and 25 diets to provide 124 diet–faecal pairs, with each sheep fed four or five of the diets. The diets were five forages fed alone or with urea, molasses, cottonseed meal or sorghum grain supplements. Ninety-nine diet–faecal pairs were selected at random, but ensuring that all diets were represented and both the F.CHEM and F.NIRS prediction equations were developed from this dataset. The remaining 25 diet–faecal pairs were used as a validation dataset. Regressions for F.CHEM were developed by stepwise regression, and F.NIRS prediction equations were developed by partial least-squares regression. Prediction equations based solely on faecal analyte concentrations (F.CHEMc) had poor predictive ability, and models incorporating faecal constituent excretion rates (F.CHEMe) were the best at predicting feed constituent intakes. These models had slightly lower standard errors of prediction (SEP) for organic matter (OM) intake and digestible OM intake compared with the F.NIRS models that did not include faecal excretion rates. However, F.NIRS models had lower SEP for protein intake and OM digestibility. Good agreement between the F.CHEMe and F.NIRS methods was evident (according to the 95% limits-of-agreement test), and both predicted the reference values precisely and with small bias. Equations derived from a dataset that included representatives of all diets used in the experiment gave much better prediction of diet characteristics than those developed from a dataset constructed entirely at random. Equations for F.NIRS developed in this way successfully predicted the characteristics of diets that included forages fed alone and with the type of supplements used in tropical Australia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.