Abstract
Diabetic peripheral neuropathy (DN) is a serious complication of diabetes mellitus (DM) that can lead to foot ulceration and eventual amputation if not treated properly. Therefore, detecting DN early is important. This study presents an approach for diagnosing various stages of the progression of DM in lower extremities using machine learning to classify individuals with prediabetes (PD; n = 19), diabetes without (D; n = 62), and diabetes with peripheral neuropathy (DN; n = 29) based on dynamic pressure distribution collected using pressure-measuring insoles. Dynamic plantar pressure measurements were recorded bilaterally (60 Hz) for several steps during the support phase of walking while participants walked at self-selected speeds over a straight path. Pressure data were grouped and divided into three plantar regions: rearfoot, midfoot, and forefoot. For each region, peak plantar pressure, peak pressure gradient, and pressure–time integral were calculated. A variety of supervised machine learning algorithms were used to assess the performance of models trained using different combinations of pressure and non-pressure features to predict diagnoses. The effects of choosing various subsets of these features on the model’s accuracy were also considered. The best performing models produced accuracies between 94–100%, showing the proposed approach can be used to augment current diagnostic methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.