Abstract
Density plays an important role as basic information for applying wood as construction materials. Recent years, the application of near-infrared spectroscopy as non-destructive testing (NDT) has been promising. Density prediction for standing trees in huge variation trees and species of natural forest needs to be investigated using NDT as of eco-green harvesting. The combination of density information and near-infrared spectroscopy is enabled to build a prediction model. This research applied increment cores sampling for density prediction analysis using near-infrared spectroscopy method. The research combined increment cores samples from multiple wood species to be analyzed in one chemometrics analysis of cross-validation partial least squares regression (CV-PLSR) to build a prediction model of density. The research resulted coefficient of determination for cross-validation (R2CV) of 0.76 with number of latent variable (LV) 10 from the 1st derivative with 13 smoothing-point spectra and wavelength of 1200 – 1800 nm as the best prediction model. The result seemed sufficient enough with those number of LV for this small tube wood sampling of increment cores from multiple wood species. This research proved that building a prediction model for multiple wood species is possible to be done.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.