Abstract

This paper presents a comparative study between Bayesian Neural Network (BNN), classical Neural Network (NN) and empirical models for estimating the daily global solar irradiation (DGSR). An experimental meteorological database from 1998 to 2002 at Al-Madinah (Saudi Arabia) has been used. Four input parameters have been employed: air temperature, relative humidity, sunshine duration and extraterrestrial irradiation. Automatic relevance determination (ARD) method has investigated in order to select the optimum input parameters of the NN. Results show that the BNN performs better that other NN structures and empirical models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.