Abstract

Cytochrome P450 (CYP) is a family of enzymes that are responsible for about 75% of all metabolic reactions. Among them, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 participate in the metabolism of most drugs and mediate many adverse drug reactions. Therefore, it is necessary to estimate the chemical inhibition of Cytochrome P450 enzymes in drug discovery and the food industry. In the past few decades, many computational models have been reported, and some provided good performance. However, there are still several issues that should be resolved for these models, such as single isoform, models with unbalanced performance, lack of structural characteristics analysis, and poor availability. In the present study, the deep learning models based on python using the Keras framework and TensorFlow were developed for the chemical inhibition of each CYP isoform. These models were established based on a large data set containing 85715 compounds extracted from the PubChem bioassay database. On external validation, the models provided good AUC values with 0.97, 0.94, 0.94, 0.96, and 0.94 for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. The models can be freely accessed on the Web server named CYPi-DNNpredictor (cypi.sapredictor.cn), and the codes for the model were made open source in the Supporting Information. In addition, we also analyzed the structural characteristics of chemicals with CYP450 inhibition and detected the structural alerts (SAs), which should be responsible for the inhibition. The SAs were also made available online, named CYPi-SAdetector (cypisa.sapredictor.cn). The models can be used as a powerful tool for the prediction of CYP450 inhibitors, and the SAs should provide useful information for the mechanisms of Cytochrome P450 inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call