Abstract

This paper presents the results of a series of experiments performed to examine the validity of a theoretical model for evaluation of cutting forces and machining error in ball end milling of curved surfaces. The experiments are carried out at various cutting conditions, for both contouring and ramping of convex and concave surfaces. A high precision machining center is used in the cutting tests. In contouring, the machining error is measured with an electric micrometer, while in ramping it is measured on a 3-coordinate measuring machine. The results show that in contouring, the cutting force component that influences the machining error decreases with an increase in milling position angle, while in ramping, the two force components that influence the machining error are hardly affected by the milling position angle. Moreover, in contouring, high machining accuracy is achieved in “Up cross-feed, Up cut” and “Down cross-feed, Down cut” modes, while in ramping, high machining accuracy is achieved in “Left cross-feed, Downward cut” and “Right cross-feed, Upward cut” modes. The theoretical and experimental results show reasonably good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.