Abstract

The use of the Diercks equation, which was developed for assessing the creep-fatigue lives of AISI 304 (JIS SUS 304), for predicting the creep-fatigue lifetimes of Cr-Mo steels was examined in comparison with the linear cumulative damage rule and the strain range partitioning method. Following conclusions were reached:(1) The differences in the fatigue and the creep-rupture strengths existing between the SUS 304 and the Cr-Mo steels can be accounted for by modifying two factors in the original Diercks equation: for the fatigue lifetime ratio ฮฑ, the relative lifetime ratio, ฮฑr, which is a ratio of the pure fatigue life of SUS 304 to that of the Cr-Mo steel concerned, should be used, while for the temperature TC, the equivalent temperature, Te, which is a temperature that will give rise to the same creep-rupture lifetime for the Cr-Mo steel as for 304 for the stress concerned, should be used.(2) The Diercks equation, modified as in (1) above, predicts the creep-fatigue lives of Cr-Mo steels to a factor of 2, i.e., no more than twice if overestimated and no less than one half if underestimated. This is the same accuracy that the strain range partitioning method features.(3) The linear cumulative damage rule should not be applied to Cr-Mo steels not only because it can give mutually contradicting evaluations for different strain waveforms, but because the accuracy of prediction is unacceptably large.(4) Since the method proposed herein for formulating the modified Diercks equation is free of the complexities in experimentation and in data analysis that characterize the strain range partitioning method, it should be taken as a better means, to the first approximation at least, of assessing the creep-rupture properties of Cr-Mo steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.