Abstract

Social distancing policies are currently the best method of mitigating the spread of the COVID-19 pandemic. However, adherence to these policies vary greatly on a county-by-county level. We used social distancing adherence (SoDA) estimated from mobile phone data and population-based demographics/statistics of 3054 counties in the United States to determine which demographics features correlate to adherence on a countywide level. SoDA scores per day were extracted from mobile phone data and aggregated from March 16, 2020 to April 14, 2020. 45 predictor features were evaluated using univariable regression to determine their level of correlation with SoDA. These 45 features were then used to form a SoDA prediction model. Persons who work from home prior to the COVID-19 pandemic (β = 0.259, p < 0.00001) and owner-occupied housing unit rate (β = −0.322, p < 0.00001) were the most positively correlated and negatively correlated features to SoDA, respectively. Counties with higher per capita income, older persons, and more suburban areas were positively associated with adherence while counties with higher African American population, high obesity rate, earlier first COVID-19 case/death, and more Republican-leaning residents were negatively correlated with adherence. The base model predicted county SoDA with 90.8% accuracy. The model using only COVID-19-related features predicted with 64% accuracy and the model using the top 25 most substantial features predicted with 89% accuracy. Our results indicate that economic features, health features, and a few other features, such as political affiliation, race, and the time since the first case/death, impact SoDA on a countywide level. These features, combined, can predict adherence with a high level of confidence. Our prediction model could be utilized to inform health policy planning and potential interventions in areas with lower adherence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.