Abstract

During the spread of a pandemic such as COVID- 19, the effort required of health institutions increases dra-matically. Generally, Health systems’ response and efficiency depend on monitoring vital signs such as blood oxygen level, heartbeat, and body temperature. At the same time, remote health monitoring and wearable health technologies have revolutionized the concept of effective healthcare provision from a distance. However, analyzing such a large amount of medical data in time to provide the decision-makers with necessary health procedures is still a challenge. In this research, a wearable device and monitoring system are developed to collect real data from more than 400 COVID-19 patients. Based on this data, three classifiers are implemented using two ensemble classification techniques (Adaptive Boosting and Adaptive Random Forest). The analysis of collected data showed a remarkable relationship between the patient’s age and chronic disease on the one hand and the speed of recovery on the other. The experimental results indicate a highly accurate performance for Adaptive Boosting classifiers, reaching 99%, while the Adaptive Random Forest got a 91% accuracy metric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.