Abstract

A major emphasis is the dissemination of COVID-19 across the country's many regions and provinces. Using the present COVID-19 pandemic as a guide, the researchers suggest a hybrid model architecture for analyzing and optimizing COVID-19 data during the complete country. The analysis of COVID-19's exploration and death rate uses an ARIMA model with susceptible-infectious-removed and susceptible-exposed-infectious-removed (SEIR) models. The logistic model's failure to forecast the number of confirmed diagnoses and the snags of the SEIR model's too many tuning parameters are both addressed by a hybrid model method. Logistic regression (LR), Autoregressive Integrated Moving Average Model (ARIMA), support vector regression (SVR), multilayer perceptron (MLP), Recurrent Neural Networks (RNN), Gate Recurrent Unit (GRU), and long short-term memory (LSTM) are utilized for the same purpose. Root mean square error, mean absolute error, and mean absolute percentage error are used to show these models. New COVID-19 cases, the number of quarantines, mortality rates, and the deployment of public self-protection measures to reduce the epidemic are all outlined in the study's findings. Government officials can use the findings to guide future illness prevention and control choices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call