Abstract

ObjectiveKawasaki syndrome (KS) is an acute vasculitis that affects children < 5 years of age and leads to coronary artery lesions (CAL) in about 20-25% of untreated cases. Machine learning (ML) is a branch of artificial intelligence (AI) that integrates complex data sets on a large scale and uses huge data to predict future events. The purpose of the present study was to use ML to present the model for early risk assessment of CAL in children with KS by different algorithms.MethodsA total of 158 children were enrolled from Women and Children’s Hospital, Qingdao University, and divided into 70–30% as the training sets and the test sets for modeling and validation studies. There are several classifiers are constructed for models including the random forest (RF), the logistic regression (LR), and the eXtreme Gradient Boosting (XGBoost). Data preprocessing is analyzed before applying the classifiers to modeling. To avoid the problem of overfitting, the 5-fold cross validation method was used throughout all the data.ResultsThe area under the curve (AUC) of the RF model was 0.925 according to the validation of the test set. The average accuracy was 0.930 (95% CI, 0.905 to 0.956). The AUC of the LG model was 0.888 and the average accuracy was 0.893 (95% CI, 0,837 to 0.950). The AUC of the XGBoost model was 0.879 and the average accuracy was 0.935 (95% CI, 0.891 to 0.980).ConclusionThe RF algorithm was used in the present study to construct a prediction model for CAL effectively, with an accuracy of 0.930 and AUC of 0.925. The novel model established by ML may help guide clinicians in the initial decision to make a more aggressive initial anti-inflammatory therapy. Due to the limitations of external validation and regional population characteristics, additional research is required to initiate a further application in the clinic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.