Abstract
A two-state theoretical model is proposed to study the evolution of local order when a good metallic glass former is cooled down from the liquid state. We find that the development of order depends strongly on the cooling rate and that the ordered fraction converges to an upper limit at low cooling rates. We compare our model predictions with molecular dynamics (MD) simulation results for the Zr 35.5Cu 64.5 binary system, revealing good agreement for the fast cooling rates accessible through MD. The analytical model proposed here, however, can be extended to much lower rates which correspond to experimentally accessible processing routes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.