Abstract

Generally, the macro-scopic mechanical properties of heterogeneous composites depend on meso-components’ distribution and mechanical properties, but it is extremely difficult to establish a clear macro-meso relationship expression. To cope with this challenge, for concrete, a strategy based on deep learning was proposed to obtain the stress-strain curves through meso-model image information. First, the GoogLeNet model based on convolutional neural networks was used for image information recognition and extraction. According to the complexity of the stress-strain curve, data preprocessing operations were performed and the corresponding multi-task loss function was designed. The meso-model images in the data set were generated with the random aggregate model based on the Monte Carlo method, and numerical simulation experiments were conducted to obtain the uniaxial compressive stress-strain curve of the corresponding meso-model. Finally, the feasibility of the proposed method was evaluated through training and testing. The training efficiency and prediction accuracy of the GoogLeNet model are better than the AlexNet and ResNet models, and have good generalization ability and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.