Abstract

AimTo construct predictive models of diabetes complications (DCs) by big data machine learning, based on electronic medical records. MethodsSix groups of DCs were considered: eye complications, cardiovascular, cerebrovascular, and peripheral vascular disease, nephropathy, diabetic neuropathy. A supervised, tree-based learning approach (XGBoost) was used to predict the onset of each complication within 5 years (task 1). Furthermore, a separate prediction for early (within 2 years) and late (3–5 years) onset of complication (task 2) was performed. A dataset of 147.664 patients seen during 15 years by 23 centers was used. External validation was performed in five additional centers. Models were evaluated by considering accuracy, sensitivity, specificity, and area under the ROC curve (AUC). ResultsFor all DCs considered, the predictive models in task 1 showed an accuracy > 70 %, and AUC largely exceeded 0.80, reaching 0.97 for nephropathy. For task 2, all predictive models showed an accuracy > 70 % and an AUC > 0.85. Sensitivity in predicting the early occurrence of the complication ranged between 83.2 % (peripheral vascular disease) and 88.5 % (nephropathy). ConclusionsMachine learning approach offers the opportunity to identify patients at greater risk of complications. This can help overcoming clinical inertia and improving the quality of diabetes care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.