Abstract

A new method to predict concentration dependence of collective diffusion coefficient of bovine serum albumin (BSA) in aqueous electrolyte solution is developed based on the generalized Stokes-Einstein equation which relates the diffusion coefficient to the osmotic pressure. The concentration dependence of osmotic pressure is evaluated using the solution of the mean spherical approximation for the two-Yukawa model fluid. The two empirical correlations of sedimentation coefficient are tested in this work. One is for a disordered suspension of hard spheres, and another is for an ordered suspension of hard spheres. The concentration dependence of the collective diffusion coefficient of BSA under different solution conditions, such as pH and ionic strength is predicted. From the comparison between the predicted and experimental values we found that the sedimentation coefficient for the disordered suspension of hard spheres is more suitable for the prediction of the collective diffusion coefficients of charged BSA in aqueous electrolyte solution. The theoretical predictions from the hard-core two-Yukawa model coupled with the sedimentation coefficient for a suspension of hard spheres are in good agreement with available experimental data, while the hard sphere model is unable to describe the behavior of diffusion due to its neglect of the double-layer repulsive charge-charge interaction between BSA molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.