Abstract

Abstract All coal mine disasters are dynamic geological phenomenon and affected by many factors. However, locating the enriched areas of CSM (coal seam methane) may be the precondition for the successful prediction of such disasters. Traditional methods of investigating CSM enriched areas use limited data and only consider a few important factors. Their success rate is low and cannot meet practical needs. In this paper, an alternative method is proposed. The procedure is given as follows: 1) fracture attributes derived from azimuth variations of P-wave data in coal seams and wall rocks can be extracted; 2) AVO attributes, such as the intercept P and gradient G parameters can be extracted from different azimuths from 3D seismic data; 3) seismic cubes can be inverted and the relative attributes of impedance cubes can be extracted; 4) using a GIS platform, multi-source information can be obtained and analyzed; these include fracture attributes of coal seams and wall rocks, the thickness of coal seams, the distribution of faults and structures, the depth of coal seams, the inclination and exposure of coal seams and the coal rank. Through this processing procedure, methane enriched areas can be systematically detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.