Abstract

Commercial off-the-shelf CMOS image sensors were irradiated with protons at energies ranging from 30 MeV to 185 MeV. The irradiation-induced dark current increase and its distribution are studied. An empirical prediction method is used to assess the increase of both mean dark current and associated non-uniformity after a mono-energetic proton irradiation. The results are found to be in good agreement with the experimental measurements. The model also proved to be well adapted to predict dark current increase distributions for a device exposed to a multi-energetic proton beam. The impact of this dark current enhancement on the radiometric performance of the sensor is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call