Abstract
ABSTRACTAccurate prediction of transition temperature is very helpful for the design of new liquid crystals (LCs) because even small changes in structure can dramatically alter the transition temperature, and therefore the synthesis of LCs should not be governed only by chemical intuition. A quantitative structure–property relationship (QSPR) study was performed on 243 five-ring bent-core LCs in order to predict their clearing temperatures using molecular descriptors. Decision tree and multivariate adaptive regression splines (MARS), techniques well suited for high-dimensional data analysis, were applied to select important descriptors (dimension reduction) and to generate nonlinear models. These techniques were applied both on two-dimensional (2D) descriptors only and on the pool of 2D and 3D descriptors (2&3D). The obtained QSPR models were tested using 15% of available data, and their performance and ability to generalise were analysed using multiple statistical metrics. The best results for the external test set were obtained using the MARS model created with 2&3D descriptors, with a high correlation coefficient of r = 0.95 and a root mean squared error of 7.41 K. All metrics suggest that the proposed QSPR model, generated by MARS, is a robust and satisfactorily accurate approach for the prediction of clearing temperatures of bent-core LCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.