Abstract

Retention prediction models for a group of pyrazines chromatographed under reversed-phase mode were developed using multiple linear regression (MLR) and artificial neural networks (ANNs). Using MLR, the retention of the analytes were satisfactorily described by a two-predictor model based on the logarithm of the partition coefficient of the analytes (log P) and the percentage of the organic modifier in the mobile phase (ACN or MeOH). ANN prediction models were also derived using the predictors derived from MLR as inputs and log k as outputs. The best network architecture was found to be 2-2-1 for both ACN and MeOH data sets. The optimized ANNs showed better predictive properties than the MLR models especially for the ACN data set. In the case of the MeOH data set, the MLR and ANN models have comparable predictive performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.