Abstract
The high-pressure properties of fluorine and chlorine are not yet well understood because both are highly reactive and volatile elements, which have made conducting diamond anvil cell and x-ray diffraction experiments a challenge. Here, we use ab initio methods to search for stable crystal structures of both elements at megabar pressures. We demonstrate how symmetry and geometric constraints can be combined to efficiently generate crystal structures that are composed of diatomic molecules. Our algorithm extends the symmetry driven structure search method [R. Domingos et al., Phys. Rev. B 98, 174107 (2018)] by adding constraints for the bond length and the number of atoms in a molecule while still maintaining generality. As a method of validation, we have tested our approach for dense hydrogen and reproduced the known molecular structures of Cmca-12 and Cmca-4. We apply our algorithm to study chlorine and fluorine in the pressure range of 10 GPa-4000 GPa while considering crystal structures with up to 40 atoms per unit cell. We predict chlorine to follow the same series of phase transformations as elemental iodine from Cmca to Immm to Fm3¯m, but at substantially higher pressures. We predict fluorine to transition from a C2/c to Cmca structure at 70 GPa, to a novel orthorhombic and metallic structure with P42/mmc symmetry at 2500 GPa, and finally to its cubic analog form with Pm3¯n symmetry at 3000 GPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.