Abstract

Improvement of chip control is a necessity for automated machining. Chip control is closely related to chip flow and it plays also a predominant role in the effective control of chip formation and chip breaking for the easy and safe disposal of chips, as well as for protecting the surface-integrity of the workpiece. Although several ways to predict the chip flow angle (CFA) have been subjected in some researches, a good approximation has not been achieved yet. In this study, using different indexable inserts and cutting conditions for turning of mild steel, the chip flow angles were measured and some of the collected data from this experimental study were used for training with a two hidden layered backpropagation neural network algorithm. A group was formed from randomly selected data for testing. The chip flow angle values found from multiple regression, neural network (NN) and studies of previous researchers under the same turning conditions of the present study were compared. It has been seen that the best prediction was obtained by neural network approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.