Abstract
BackgroundA postoperative change in pelvic flexion following total hip arthroplasty (THA) is considered to be one of the causes of dislocation. This study aimed to predict the change of pelvic flexion after THA integrating preoperative and postoperative information with artificial intelligence. MethodsThis study involved 415 hips which underwent primary THA. Pelvic flexion angle (PFA) is defined as the angle created by the anterior pelvic plane and the horizontal/vertical planes in the supine/standing positions, respectively. Changes in PFA from preoperative supine position to standing position at 5 years after THA were recorded and which were defined as a 5-year change in PFA. Machine learning analysis was performed to predict 5-year change in PFA less than −20° using demographic, blood biochemical, and radiographic data as explanatory variables. Decision trees were constructed based on the important predictors for 5-year change in PFA that can be handled by humans in clinical practice. ResultsAmong several machine learning models, random forest showed the highest accuracy (area under the curve = 0.852). Lumbo-lordotic angle, femoral anteversion angle, body mass index, pelvic tilt, and sacral slope were most important random forest predictors. By integrating these preoperative predictors with those obtained 1 year after the surgery, we developed a clinically applicable decision tree model that can predict 5-year change in PFA with area under the curve = 0.914. ConclusionA machine learning model to predict 5-year change in PFA after THA has been developed by integrating preoperative and postoperative patient information, which may have capabilities for preoperative planning of THA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.